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Abstract We study stationary configurations mimicking nonholonomic locally anisotropic
black rings (for instance, with ellipsoidal polarizations and/or imbedded into solitonic back-
grounds) in three/six dimensional pseudo-Finsler/Riemannian spacetimes. In the asymptoti-
cally flat limit, for holonomic configurations, a subclass of such spacetimes contains the set
of five dimensional black ring solutions with regular rotating event horizon. For correspond-
ing parameterizations, the metrics and connections define Finsler–Einstein geometries mod-
eled on tangent bundles, or on nonholonomic (pseudo) Riemannian manifolds. In general,
there are vacuum nonholonomic gravitational configurations which can not be generated in
the limit of zero cosmological constant.

Keywords Pseudo-Finsler geometry · Nonholonomic manifolds and bundles · Nonlinear
connections · Black rings

1 Introduction

There is a recent interest in (pseudo) Finsler geometry and applications to gravity [1–7],
cosmology and astrophysics [8–11], see reviews of results and methods in [12, 13]. This
paper is a partner of work [14], where Finsler black hole, ellipsoid and solitonic solutions
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were constructed for two classes of models of (pseudo) Finsler gravity on nonholonomic
(pseudo) Riemannian manifolds and/or tangent bundles. We follow our anholonomic defor-
mation method of constructing exact solutions in gravity and the aim of this letter is to study
axisymmetric stationary solutions in higher dimensions and show how black ring configura-
tions can be generated in Finsler gravity theories.1

The most important property of the axisymmetric stationary solutions both in Finsler
like theories and extra-dimension gravity is the fact that they admit event horizons with non-
spherical topology which is in contrast to the four dimensional general relativity theory. In
general, the topology of the event horizon can not be uniquely determined which provides a
number of possible theoretical and experimental verifications of gravity theories and analo-
gous models of classical and quantum interactions. In order to consider nonholonomic trans-
forms of exact solutions in (pseudo) Finsler and/or extra dimension gravity with nontrivial
topology and possible spacetime topology transitions, we shall use as ‘prime’ metrics certain
classes of six dimensional metrics containing as imbedding five-dimensional black ring/hole
configurations, for instance, having topology of S

3-sphere, or S
1 × S

2-torus.2 The ‘target’
metrics generated by nonholonomic deforms will be constructed to possess the same, or dif-
ferent type topology, which for Finsler spaces positively can be more complicated and with
a more ‘rich’ spacetime geometry because of existence of a nontrivial nonlinear connection
(N-connection) structure.3

Assuming the existence of two additional commutating axial killing vector fields and the
horizon topology of black ring S

1 × S
2, it was found [17] that there is only one asymptot-

ically flat black ring solution with a regular horizon which is the so-called Pomeransky–
Sen’kov black ring [18]. There were also found many other black ring/object solutions
(black Saturn/torus-ellipsoid configurations, di-ring/bi-ring etc.), see reviews and original
results in [19–23] and Part II of monograph [7] where solutions with torus and ellipsoid
nonholonomic configurations are investigated in details.

The discoveries that certain uniqueness black hole and non-hair theorems are violated
in higher dimensions were regarded as very surprising and related to solutions with non-
spherical horizon topology. We add to the list of such counterexamples of black hole fun-
damental theorems a new series of solutions generated by nonholonomic deformations and
modeling Finsler configurations on higher dimension Einstein spaces and/or tangent bun-
dles.

The paper is organized as follows: In Sect. 2, we fix a very general ansatz for a
class of metrics with toroidal topology which are nonholonomically deformed on (pseudo)
Finsler/Riemannian spacetimes. Such metrics are subjected to the condition to define
Finsler–Einstein spacetimes as exact solutions of corresponding Einstein equations with
cosmological constant. Section 3 is devoted to a class of 6-dimensional exact solutions with
nontrivial cosmological constants. There are considered certain conditions when such solu-
tions define nonholonomic deformations of black ring metrics and (pseudo) Finsler polar-
ized black rings with possible ellipsoidal deformations and solitonic perturbations. There

1The solutions analyzed in this work are different from the locally anisotropic (black) ellipsoid/torus config-
urations considered in Chaps. 10–12 of [7]. In this paper, our goal is to analyze black ring metrics and their
nonholonomic deformations just for the (pseudo) Finsler spaces.
2In this paper, we shall use the term spacetime for a (pseudo) Riemannian/Finsler manifold enabled with a
metric structure of signature ±.
3We consider that our readers are familiar with the main geometric concepts of Lagrange-Finsler geometry
modelled on tangent bundles [15, 16], or on (pseudo) Riemannian manifolds enabled with nonintegrable
distributions (i.e. nonholonomic/N-anholonomic manifolds) [7, 13, 14].
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are stated the conditions when Finsler type solutions transform into the Levi–Civita ones.
In Sect. 4, we analyze (pseudo) Finsler stationary vacuum solutions for the so-called canon-
ical distinguished connection in Finsler geometry and the Levi–Civita connection in extra
dimension gravity. We show that for small nonholonomic deformations, it is possible to
generate Finsler type black ring solutions with small polarizations of physical parameters.
Finally, we provide some concluding remarks in Sect. 5.

2 Nonholonomic Ring Ansatz for Finsler–Einstein Spaces

2.1 Geometric Preliminaries

We can consider a six dimensional (6-d) manifold V of necessary differentiability class.
We endow it with a 3-dimensional non-integrable distribution D. The pair (V,D) is called a
nonholonomic manifold. We label the local coordinates u = (x, y) on an open region U ⊂ V
in the form uα = (xi, ya) with indices i, j, k, . . . = 1,2,3 and a, b, c, . . . = 4,5,6.4 Let ei′
be a local frame for D such that ei′ = ei

i′
∂

∂xi + ea
i′

∂
∂ya with det |ei

i′ | �= 0. The Einstein

convention on summation is applied. For any set of frame coefficients ei
i′ , we can define

e
j ′

i ≡ (e−1)i
j ′ following formulas ei

i′e
j ′

i = δ
j ′
i′ , where δ

j ′
i′ is the Kronecker symbol (such

frame and coframe coefficients can be defined, in general, on any U).

Expressing ∂

∂xi = e
j ′

i ej ′ +e a′
i

∂

∂ya′ , taking ei = e
j ′

i ej ′ as a new local frame on D consider-

ing that e a′
a = δa′

a and e a
i ≡ Na

i (x, y), we get ei = δi = ∂

∂xi − Na
i (u) ∂

∂ya .5 We may complete

ei to a local frame eα = (ei , ea), for ea = ∂a ≡ ∂
∂ya , on V. This fact suggests to consider also

on V the distribution D̃ locally spanned by ∂a. It is supplementary to D and locally inte-
grable. If a change of coordinates (xi, ya) → (xi′(xi, ya), ya′

(xi, ya)) is performed, the for-

mula ∂
∂ya = ∂xi′

∂ya
∂

∂xi′ + ∂ya′
∂ya

∂

∂ya′ has to simplify to ∂
∂ya = ∂ya′

∂ya
∂

∂ya′ and thus ∂xi′
∂ya = 0. This equal-

ity and the general condition δj = e
j ′

j δj ′ with det |e j ′
j | �= 0, where δj ′ = ∂

∂xj ′ − Na′
j ′ (u) ∂

∂ya′ ,

imply e
j ′

j = ∂xj ′
∂xj and ∂xj ′

∂xj Na′
j ′ = ∂ya′

∂ya Na
j − ∂ya′

∂xj . Alternatively, we may say that V is a foliated

manifold with foliation determined by the distribution D̃, called also structural distribution,
and having D as a transversal distribution.

In this work the nonholonomic aspects will be more important and the stress will be
upon the distribution D. In particular, V can be the total spaces, for instance, of a sub-
mersion over a 3-d manifold M , or (more particular) a vector bundle E over M , a prin-
cipal bundle over M , or the (co) tangent bundle T M (T ∗M). The general geometrical
framework just described, terms and techniques from Finsler and Lagrange geometries
[7, 12, 13, 15, 16, 31] will be used. Thus we call a decomposition T V = D ⊕ D̃ as
a nonlinear connection (N-connection) structure N on V with local coefficients Na

i (u).6

For V = T M , we can write T T M = hT M ⊕ hT M with certain natural “horizontal” (h)

4In a similar form we shall use ‘primed’ indices and coordinates, uα′ = (xi′ , ya′
), when i′, j ′, k′, . . . = 1,2,3

and a′, b′, c′, . . . = 4,5,6.

5In our works, boldface symbols are used for nonholonomic manifolds/bundles (nonholonomic spaces) and
geometric objects on such spaces; we can consider that δi are the so-called N-elongated partial derivatives in
Finsler geometry and generalizations.
6In this work, we shall use the so-called canonical Cartan N-connection and the distinguished connection,
d-connection, see details in [13, 16].
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and “vertical” (v) decompositions. In such a case, a N-connection structure can be de-
rived canonically from any regular Lagrangian L : T M → R (or for some more particu-
lar homogeneous on variables ya cases, from a fundamental (generating) Finsler function
F(x, y), when F(x,βy) = βF(x, y),β > 0). This allows us to construct various models
of Lagrange–Finsler geometry and gravity theories on T M , when the variables ya are of
“velocity/momentum” type. Alternatively, we can work on a (pseudo) Riemannian nonholo-
nomic manifold V endowed with a corresponding metric structure g = {gαβ(u)}. For this
class of nonholonomic geometry and gravity theories, any types of conventional distribu-
tions D and D̃ can be introduced on V on convenience, for instance, with the aim to define
a general geometric method of constructing exact solutions in general relativity and various
modifications of Ricci flow theory [7, 12, 13, 26–28], when ya can be treated as certain gen-
eral nonholonomically constrained variables/coordinates (they can be defined even on usual
Einstein spaces of arbitrary dimension).

2.2 Ring Type Einstein and Finsler–Einstein Spaces

We shall use a ‘prime’ metric on V

ǧ = ǧi (x
k)dxi ⊗ dxi + ȟa(x

k)ěa ⊗ ěa,

ěa = dya + Ňa
i (xk)dxi .

(1)

For certain parameterizations,7 this metric contains as a trivial embedding (with extension
on coordinate y6, for a term of type ±(dy6)2 in the metric quadratic form, into a 6-d pseudo-
Riemannian space) the 5-d black ring metric with a dipole, or with rotation in the S

2 [24].
The 5-d part of (1), in coordinates (xi, y4, y5), is prescribed to be conformally proportional,
with the factor (x − y)2F(y)/Ř2F(x)G(y), to the black ring metric

brg = Ř2 F(x)

(x − y)2

[
−G(y)

F (y)
dψ ⊗ dψ + G−1(x)dx ⊗ dx − G−1(y)dy ⊗ dy

]

+ Ř2 G(x)

(x − y)2
dφ ⊗ dφ

− F(y)

F (x)

(
dt − CŘ

1 + y

F(y)
dψ

)
⊗

(
dt − CŘ

1 + y

F(y)
dψ

)
. (2)

The coefficients of this metric are stated by a class of functions and constants: for instance,
F(x) = 1 + λ̌x and G(y) = (1 − y2)(1 + νy) for Ř = const and

C =
√

λ̌(λ̌ − ν)(1 + λ̌)/(1 − λ̌)

is determined by certain dimensionless parameters λ̌ and ν satisfying the condition 0 < ν ≤
λ̌ < 1 (here we note that our notations are different from those used in [19]). The metric (2)
defines an exact solution of Einstein equations for the Levi–Civita in 5-d gravity.

7ǧ1 = −1, ǧ2 = ǧ2(x2, x3), ǧ3 = ǧ3(x2, x3), ȟ6(xk) = ±1 and some vanishing N-connection coefficients

with respect to a corresponding local coordinate basis, Ň4
i

= 0, Ň6
i

= 0, Ň5
2,3 = 0, but Ň5

i
�= 0, and for local

coordinates xi = xi (ψ,x, y), y4 = φ,y5 = t, y6 = y6.
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Using nonholonomic deformations of the locally isotropic black ring metric (1) with
gi(x

k̂) = ηi(x
k̂)ǧi and hâ = ηâ(x

k, y4)ȟâ and some nontrivial N4
i = wi(x

k, y4) and N5
i =

ni(x
k, y4), but N6

i = 0, when indices with “hats” run values î, k̂, . . . = 2,3 and â, b̂, . . . =
4,5, we generate a metric of type

g = gi(x
k̂)ei ⊗ ej + ha(x

k, y4)ea ⊗ eb, (3)

ea = dya + Na
i (xk, y4)dxi, (4)

when values gα′β ′ = [gi, ha] with g1 = −1 and h6 = ±1 are related by frame transforms

gα′β ′eα′
α(x

k, ya)e
β ′
β(xk, ya) = fαβ(xk, ya) (5)

to a (pseudo-Finsler) metric fαβ = [fij , fab] and corresponding N-adapted dual canonical
basis ce α = (dxi, cea = dya + cNa

i (xk, ya)dxi) defined by the so-called canonical Cartan
N-connection in Finsler geometry, see details in [12–16].8 For any given values gα′β ′ and
fαβ , we have to solve a system of quadratic algebraic equations (5) in order to determine the
unknown variables eα′

α . How to define in explicit form such frame coefficients (vierbeins)
and coordinates in 4-d we discuss in [12, 14], but the algebraic computations are similar
for 6-d. As a matter of principle, any (pseudo) Riemannian metric gα′β ′ can be expressed
in Finsler variables as a metric fαβ , up to a trivial imbedding into an even dimension, (the
inverse statement also holds true), if a N-connection structure is prescribed on V. The stan-
dard (pseudo) Finsler geometric and gravitational models (for instance, those from [15, 16])
are constructed on V = T M , when ‘fiber’ variables ya are treated as velocities, but Finsler
like structures/variables can be defined also in the Einstein gravity and string generalizations
[7, 12, 13] when ya are considered as certain nonholonomically constrained coordinates on
(pseudo) Riemannian manifolds with possible torsion generalizations.

In this work, we shall analyze a class of 6-d metrics (or 3-d Finsler metrics) defining
Finsler–Einstein spaces as exact solutions of the Einstein equations,

R̂i
j = λδi

j , R̂a
b = λδa

b, R̂ia = R̂ai = 0 (6)

8Any (pseudo) Finsler metric f = {fαβ } can be parametrized in the canonical Sasaki form

f = fij dxi ⊗ dxj + fab
ce a ⊗ ceb, cea = dya + cNa

i dxi ,

where the (pseudo) Finsler configuration is defied by 1) a fundamental real Finsler (generating) func-
tion F(u) = F(x, y) = F(xi , ya) > 0 if y �= 0 and homogeneous of type F(x,λy) = |λ|F(x, y), for any

nonzero λ ∈ R, with positively definite Hessian fab = 1
2

∂2F 2

∂ya∂yb , when det|fab| �= 0. The Cartan canonical

N-connection structure cN = {cNa
i
} is completely defined by an effective Lagrangian L = F 2 in such a form

that the corresponding semi-spray configuration is defined by nonlinear geodesic equations being equivalent
to the Euler–Lagrange equations for L (see details, for instance, in [7, 13, 16]; for “pseudo” configurations,

this mechanical analogy is a formal one, with some “imaginary” coordinates [14]). One defines cNa
i

= ∂Ga

∂y3+i

for Ga = 1
4 f a 3+i ( ∂2L

∂y3+i ∂xk y3+k − ∂L

∂xi ), where f ab is inverse to fab and respective contractions of hor-

izontal (h) and vertical (v) indices, i, j, . . . and a, b . . . , are performed following the rule: we can write, for
instance, an up v-index a as a = 3 + i and contract it with a low index i = 1,2,3. In brief, for spaces of even
dimension, we shall write yi instead of y3+i , or ya .
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where R̂αβ = {R̂ij , R̂ia, R̂ai , R̂ab} are the components of the Ricci tensor computed for the
canonical distinguished connection (d-connection) D̂, see details in [7, 12–14],9 λ is a
cosmological constant, and δi

j , for instance, is the Kronecker symbol. Solutions of non-
holonomic equations (6) are typical ones for the Finsler gravity with metric compatible
d-connections (in our case, D̂f = 0) modelled in various types of (super) string, noncommu-
tative and other generalizations, see reviews of results in references in [6, 7, 13].

Imposing additional nonholonomic constraints on coefficients of metrics solving the sys-
tem (6) but when the distorsion of the Ricci tensor (under nonholonomic deforms from one
linear connection to another) is zero, we select a more restricted class of Finsler–Einstein
configurations defining exact solutions in the 6-d generalization of the Einstein gravity, with
the Ricci tensor �Rαβ for the Levi–Civita connection ∇ , i.e. solutions of

�Rαβ = λgαβ. (7)

There are Finsler–Einstein configurations with R̂αβ = �Rαβ but, in general, such spaces have
different curvature tensors because they are defined by different linear connections.

The goal of this work is to construct and analyze possible physical implications of a class
of exact solutions of (6) and (7) with λ �= 0, or λ = 0, with metrics of type (3) containing
in certain limits the black ring metric (2). The new classes of nonholonomically deformed
black rings will be considered for the (pseudo) Finsler gravity on tangent bundle and/or for
usual 6-d Einstein spacetimes.

3 6-d Solutions with Nontrivial Cosmological Constant

In this section we consider two classes of exact solutions of (non) holonomic Einstein equa-
tions with λ �= 0 generated by corresponding conformal transform of the 5-d black ring
metric (2), nonholonomic deformations and imbedding into a 6-d (pseudo) Riemannian, or
in a 3-d (pseudo) Finsler spacetime.

9The coefficients of D̂ with respect to a “N-elongated” frames of type (4) are computed �̂
γ
αβ =

(L̂i
jk

, L̂a
bk

, Ĉi
jc

, Ĉa
bc

) with

L̂i
jk = 1

2
gir (ekgjr + ej gkr − ergjk),

L̂a
bk = eb(Na

k ) + 1

2
hac

(
ekhbc − hdc ebNd

k − hdb ecN
d
k

)
,

Ĉi
jc = 1

2
gikecgjk, Ĉa

bc = 1

2
had (echbd + echcd − edhbc) .

Any geometric construction for the canonical d-connection D̂ can be re-defined equivalently into a similar one
with the Levi–Civita connection 
 = {��α

βγ }, and inversely following the formula ��
γ

αβ = �̂
γ

αβ +� Zγ
αβ ,

where the distortion tensor �Z
γ

αβ is computed as

�Z
a
jk = −Ci

jbgikhab − 1

2

a

jk, �Z
i
bk = 1

2

c

jkhcbgji − �ih
jk C

j
hb

,

�Z
a
bk = +�ab

cd
◦Lc

bk, �Z
i
kb = 1

2

a

jkhcbgji + �ih
jk C

j
hb

, �Z
i
jk = 0,

�Z
a
jb = −−�ad

cb
◦Lc

dj , �Z
a
bc = 0, �Z

i
ab = −gij

2

[ ◦Lc
aj hcb + ◦Lc

bj hca

]
,

for �ih
jk

= 1
2 (δi

j
δh
k

− gjkgih),±�ab
cd

= 1
2 (δa

c δb
d

+ hcdhab) and ◦Lc
aj

= Lc
aj

− ea(Nc
j
).
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3.1 Ansatz for Prime and Target Metrics

Let us consider a prime metric

br
cf g = −dψ ⊗ dψ + (x − y)2F(y)

Ř2F(x)G(y)

[
dx ⊗ dx

G(x)
− dy ⊗ dy

G(y)

]

+
1G(x)F (y)

F (x)G(y)
dφ ⊗ dφ

− (x − y)2F 2(y)

Ř2F 2(x)G(y)

(
dt − CŘ

1 + y

F(y)
dψ

)
⊗

(
dt − CŘ

1 + y

F(y)
dψ

)
, (8)

which multiplied to the conformal factor Ř2 F(x)

(x−y)2
G(y)

F (y)
and for 1G(x) = G(x) is just the

black ring metric (2). We introduce variables

x1 = ψ, x2 =
∫

dx/
√|G(x)|, x3 =

∫
dy/

√|G(y)|,

y4 = φ, y5 = t, y6 = y6

and label the metric coefficients as

ǧ2(x
2, x3) = [x(x2) − y(x3)]2F(x3)

Ř2F(x2)G(x3)
= −ǧ3(x

2, x3), ǧ1 = −1, ȟ6 = ±1,

ȟ4(x
2, x3) =

1G(x2) F (x3)

F (x2)G(x3)
, ȟ5(x

2, x3) = −[x(x2) − y(x3)]2 F(x3)

Ř2F(x2)G(x3)
,

Ň5
1 (x3) = CŘ

1 + y(x3)

F (x3)
, Ň5

2 = Ň5
3 = 0, Ň4

i = 0, Ň6
i = 0.

Imbedding br
cf g into a 6-d spacetime, we get a metric

ǧ = ǧ1dx1 ⊗ dx1 + ǧ2 dx2 ⊗ dx2 + ǧ3 dx3 ⊗ dx3

+ ȟ4ě4 ⊗ ě4 + ȟ5ě5 ⊗ ě5 + ȟ6ě6 ⊗ ě6, (9)

ě4 = dy4, ě5 = dy5 + Ň5
1 (x3)dx1, ě6 = dy6,

which, in general, is not a solution of field equations for a gravitational model. We search
for some classes of metrics generated by nonholonomic deformations with “polarization”
multiples ηα = [ηi(u

β), ηa(u
β)], when gα = ηαǧα = [gi = ηiǧi , ha = ηaȟa], and modified

N-connection coefficients Na
i (uβ) resulting in exact solutions of (6) and/or (7).

For

η1 = 1, η2ǧ2 = ε2e
φ(x2,x3), η3ǧ3 = ε3e

φ(x2,x3),

η6 = 1, h4
(
xk, y4

) = η4ȟ4, h5
(
xk, y4

) = η5ȟ5,

where εα = ±1 for chosen signatures, and

N4
i = wi

(
xk, y4

)
, N5

i = ni

(
xk, y4

)
, N6

i = 0,
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we get a class of ‘target’ generic off-diagonal metrics10

λg = −dx1 ⊗ dx1 + eϕ(x2,x3)[ε2 dx2 ⊗ dx2 + ε3 dx3 ⊗ dx3]
+ h4

(
xk, y4

)
e4 ⊗ e4 + h5

(
xk, y4

)
e5 ⊗ e5 ± dy6 ⊗ dy6, (10)

e4 = dy4 + wi

(
xk, y4

)
dxi, e5 = dy5 + ni

(
xk, y4

)
dxi,

with the coefficients will be defined in next sections such a way that these metrics are exact
solutions of the Einstein equations in (pseudo) Riemannian/Finsler gravity.

3.2 (Pseudo) Finsler Polarized Black Rings

We shall use brief denotations for some partial derivatives like a• = ∂a/∂x2, a′ = ∂a/∂x3,
a∗ = ∂a/∂y4.

3.2.1 Stationary Nonholonomic Deformations of Black Ring Metrics

By straightforward computations,11 we can verify that a metric of type (10) generates an ex-
act solution of the Einstein equations (6) if the coefficients are determined by any functions
satisfying (respectively) the conditions:

ε2ϕ
••(xk̂) + ε3ϕ

′′(xk̂) = −2ε2ε3 λ;

h4 = ± (ϕ∗)2

4λ
e−20ϕ(xi ), h5 = ∓ 1

4 λ
e2(ϕ−0ϕ(xi ));

wi = −∂iϕ/ϕ∗; (11)

ni = 1ni(x
k) + 2ni(x

k)

∫
dy4(ϕ∗)2e−2(ϕ−0ϕ(xi ))

=
{

1ni(x
k) + 2ni(x

k)
∫

dy4e−4ϕ (h∗
5)

2

h5
, if n∗

i �= 0;
1ni(x

k), if n∗
i = 0;

for any nonzero hâ and h∗
â

and (integration) functions 1ni(x
k), 2ni(x

k), a generating function
ϕ(xi, y4), and 0ϕ(xi) to be determined from certain boundary conditions for a fixed system
of coordinates with xk̂ = {x2, x3}.

There are two classes of solutions (11) constructed for a nontrivial λ. The first one is sin-
gular for λ → 0 if we choose a generation function ϕ(xi, y4) not depending on λ. It is possi-
ble to eliminate such singularities for certain parametric dependencies of type ϕ(λ, xi, y4),
when the resulting metric and N-connection coefficients are not singular on λ.

3.2.2 Small Eccentricity Ellipsoid Polarizations and Ring Deformations

It is not clear what kind of physical implications one may have exact solutions with general
coefficients of type (11). But it is possible to extract a subclass of solutions decomposed

10Which can not be diagonalized, in general, by any coordinate transform.
11For simplicity, we omit such computations in this work which are similar to those presented in Sect. 2.7,
pp. 143–150, in [7], see also reviews on the anholonomic deformation method of constructing exact solutions
in [6, 12, 13].
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on a small parameter ε which will define certain small nonholonomic deformations of the
conformally transformed black ring metric (8) on a 6-d (pseudo) Riemannian space.12

We chose a polarization function (i.e. a nonlinear self-polarization of gravitational vac-
uum with cosmological constant λ) of type

η4 = η(xi, φ, ε), (12)

where η(xi, φ, ε) is any linear on ε function depending in general on variables xi and φ.

Introducing h4 = η4ȟ4 and h5 = η5ȟ5 into the second line of equations (11), integrating on
φ and stating the integration function 0ϕ(xi) = 1, we get

ϕ = 2
√

|λȟ4|
∫

dφ
√

|η(xi, φ, ε)|,

η5 = ∓ 1

4λȟ5

exp
[
4
√

|λȟ4|
∫

dφ
√

|η(xi, φ, ε)|
]
.

(13)

Haven defined polarizations η4 and η5, we can compute the coefficients h4 and h5, which
can be used for computing the nontrivial N-connection coefficients

wi = −∂iϕ/ϕ∗ and ni = 1ni(x
k) + 2ni(x

k)

∫ (
ϕ∗)2

e−2ϕdφ.

We choose 1ni(x
k) = CŘ

1+y(x3)

F (x3)
in order to have certain similarity with the prime metric (8).

Further approximations are possible, for instance, for ω(x2, x3) = ω0x
2 and η(xi, φ, ε)

when

η4 = 1 + εη̃4(x
i, φ, ε), η5 = [

1 + ε cos(ω0x
2)

] [
1 + εη̃5(x

i, φ, ε)
]

and η2ǧ2 = ε2e
φ(x2,x3), η3ǧ3 = ε3e

φ(x2,x3) are determined by any solution φ of the first equa-
tion in (11) and η̃5 is computed using (13). This generates a subclass of Finsler–Einstein
spaces parametrized by metrics of type

λ
εg = −dx1 ⊗ dx1 + eϕ(x2,x3)[ε2 dx2 ⊗ dx2 + ε3 dx3 ⊗ dx3]

+ [
1 + εη̃4

]
ȟ4 e4 ⊗ e4

+ [
1 + ε cos(ω0x

2)
] [

1 + εη̃5
]
ȟ5e5 ⊗ e5 ± dy6 ⊗ dy6,

e4 = dy4 + wi

(
xk, y4

)
dxi, e4 = dy5 + ni

(
xk, y4

)
dxi.

(14)

The metric (14) with coefficients computed with respect to the dual frame of reference eα =
(ηidxi, e4,

√|η5|e5, dy6) is similar to a nonholonomically polarized 5-d black ring imbed-
ded self-consistently in a 6-dimensional spacetime. Really, the multiple [1 + ε cos(ω0x

2)]
before ȟ5 determines an elliptic polarization with eccentricity ε when

ř ∼ Ř/[1 + ε cos(ω0x
2)] (15)

12Such a solution will be an exact solution because this type of series decompositions are not on coordi-
nate variables but for certain fixed small parameters which can be always defined for metrics with Killing
symmetries, see details in [6, 12, 13].
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describes an ellipse with coordinate/anisotropy (ω0x
2). The multiple [1+εη̃4] before ȟ4 can

be included as a polarization of function 1G in (8), when 1G(x2) → G(x2)η4(x
i, φ, ε) ∼

G[1 + εη̃4]. Such small on ε nonholonomic deformations of the thin black rings seem to be
stable but may result in unstable solutions for minimally spinning and/or fat black rings, see
details for holonomic ring configurations in [25].13

One should emphasize that for small ε there are preserved the same type of singularities
of solutions and horizons as for the usual black ring metrics but with certain polarizations
of constants and additional smooth terms, for instance, to the curvature tensor and other
tensors/connections, all being proportional to ε. More general nonholonomic deformations
result not only in possible instabilities but, in general, in various types of “non-ring” station-
ary configurations.

3.2.3 Solitonic Perturbations of Nonholonomic Black Rings

It is possible to consider self-consistent imbedding of the metric (14) into nontrivial back-
grounds similarly as it was done for solitonic “motions” of black holes in five dimensional
gravity [27] and/or in nonholonomic Ricci flows of exact solutions in gravity [28]. There are
very different classes of solutions for nonholonomic black ring—solitonic configurations:
(1) black rings are on “huge” stationary solitonic configurations, when the resulting general
solution is not of ring type and (2) certain “small” stationary solitonic distributions preserve
the black ring character for such generic off-diagonal metrics.

In the first case, for (12), we can use a static three dimensional solitonic distribution
η(x2, x3, φ) defined as a solution of solitonic equation14

η•• + ε(η′ + 6ηη∗ + η∗∗∗)∗ = 0, ε = ±1. (16)

This induces solitonic polarizations for (13) and N-connection coefficients wi and ni ob-
tained by integrating on φ some types of functionals depending of ϕ(x2, x3, φ) and defining
solitonic distributions. The resulting metric is of type (14) is constructed as a stationary su-
perposition of 3-d solitonic distributions for 5-d and 6-d Finsler–Einstein spacetimes when
some multiples in the metric coefficients originate from former black ring coefficients of
metrics. We need to perform a more special analysis on stability and physical meaning of
such solutions for more special cases of distributions (this is out of scope of our paper). Here
we emphasize that it is obvious that, in general, certain solitonic hierarchies and related con-
servation laws can be always associated (both for nonholonomic pseudo-Riemannian and
pseudo-Finsler configurations), see details in [29, 30].

In the second case, considering that η ∼ 1 + εη̃4(x
2, x3, φ, ε), where η̃4 is a solution

of (16), we preserve the black ring character of the class of solutions even some physical pa-
rameters became solitonically polarized as we discuss below in Sect. 4.2. Such solutions in
(pseudo) Finsler gravity have positively physical interpretations as black rings with locally
anisotropic polarizations of the metric coefficients, relevant constants and parameters. But in
this case, not only such polarizations distinguish these classes of solutions. The anisotropic
coordinate φ is of “fiber’ type in a tangent bundle, i.e. a special type of velocity-coordinate.
The existence of such Finsler type black rings would be a topological evidence for broken

13The conditions of stability for nonholonomic ring configurations should be analyzed separately for a fixed
class of nonholonomic distributions like in the case of black ellipsoids provided, for instance, in [6, 26].
14We can introduce instead such an equation any type of three/two dimensional solitonic or other nonlinear
wave equations.
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local Lorentz invariance. This class of solutions is not for the Levi–Civita connection, but for
the canonical d-connection. Such Finsler–Einstein spaces with nonholonomically deformed
Lorentz invariance (and broken local special relativity theory, double special relativity mod-
els etc. [2, 3, 11]) can be described in terms of canonical quadratic metric forms and N- and
d-connection structures defined for a model of Finsler geometry on tangent bundle, as we
show in footnote 8 and Sect. 3.4.

Finally, in this section, we emphasize that if we model a pseudo-Finsler geometry on a
pseudo-Riemannian 6-d spacetime with the “fiber” coordinates treated as extra-dimensional
extensions of a 3-d gravity model, we get an Einstein–Cartan 6-d spacetime with an effec-
tive torsion induced by some off-diagonal metric terms and as a corresponding nonholo-
nomic frame effect. All geometric and physical constructions can be redefined in terms of
the Levi–Civita connection, but nevertheless, the solutions will be those for the canonical
d-connection. The above class of solutions, for such models, will describe certain possi-
ble nontrivial topological evidences, for instance, nonholonomic black rings, induced from
extra-dimension gravity.

3.3 Nonholonomic Deformations with the Levi–Civita Connection

It is possible to constrain the integral varieties of solutions of the Einstein equations for the
canonical d-connection (6), parametrized by an ansatz (10), or (14), in such a way that for
certain values of coefficients the corresponding metric will be also a solution of (7) for the
Levi–Civita connection. This is possible with respect to certain classes of N-adapted bases
when the distortion of the Ricci tensor vanishes for certain nonholonomic configurations
(see details on such constructions in [12–14]).

By straightforward computations, we can verify that we can extract from the above men-
tioned ansatz an exact 4-d solution (contained as a trivial imbedding in 6-d) in Einstein
gravity with cosmological constant λ if the coefficients of the metric and N-connection are
subjected to the conditions:

(2e2ϕϕ − λ)
(
ϕ∗)2 = 0, ϕ �= 0, ϕ∗ �= 0;

w2w3

(
ln

∣∣∣∣w2

w3

∣∣∣∣
)∗

= w•
3 − w′

2, w∗
î
�= 0, w1 = 0;

(17)
w•

3 − w′
2 = 0, if w∗

i = 0 and w1 = 0;
1n′

2(x
k) − 1n•

3(x
k) = 0, if n∗

i = 0 and n1 = 0,

which holds for any ϕ(xi, y4) = ln |h∗
5/

√|h4h5|| = const if we include configurations with
ϕ∗ = 0.

We can consider metrics of type (10) with coefficients of class (17) formally extended to
5-d and 6-d with certain nontrivial values of g1 and/or h5 which will contain as an imbedding
the black ring metric (2) and its conformal transforms on variables x and y and various
types of nonholonomic deformations. Such solutions describe certain nonholonomic black
ring configurations for small on ε deformations like in (14). Nevertheless, they are different
from those considered in [17–25]. In our case, the nonholonomic distributions are nontrivial,
and induced by a nonzero cosmological constant, which polarize physical parameters and
may state, for instance, a stationary solitonic background.
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3.4 (Pseudo) Finsler Configurations

For a general (pseudo) Finsler configuration, the class of metrics (10) with coefficients (11)
expressed in Finsler variables as a metric fαβ , see formulas (5), depends formally on all
six variables xi and ya and the imbedding into a 6-d (pseudo) Riemannian spacetime is
not trivial. Nevertheless, this class of Finsler–Einstein spaces contains two Killing vectors
because in certain systems of coordinates such metrics do not depend on variables y5 and
y6 in explicit form. Such metrics are stationary because the coefficients do not depend on
variable y5 = t.

For any fαβ = eα′
α eβ ′

βgα′β ′ corresponding to a canonical Finsler type parametrization of
metric and connections, see footnote 8, we can write in explicit h- and v-components

fij = ei′
ie

j ′
j gi′j ′ and fab = ea′

ae
b′
b ga′b′ , (18)

Na′
i′ = e i

i′ e
a′
a
cNa

i , or cNa
i = e i′

i ea
a′ Na′

i′ , (19)

were, for instance, e a
a′ is inverse to ea′

a. We can chose gi′j ′ = diag[g1′ , g2′ , g3′ ], ha′b′ =
diag[h4′ , h5′ , ε6′ ] and Na′

i′ = (N3′
i′ = wi′ ,N4′

i′ = ni′ ,N5′
i′ = 0) to be defined by any exact so-

lution of type (10), or (14). The (pseudo) Finsler data fij , fab and cNa
i = (cN3

i = cwi,
cN4

i = cni,0) are with diagonal matrices, fij = diag[f1, f2, f3] and fab = diag[f4, f5, ε6],
if the generating function is of type F = 1F(xi, y4) +2F(xi, y5) for some homogeneous
(respectively, on y4 and y5) functions 1F and 2F.15

The conditions (18) are satisfied for a diagonal representation for eα′
α if

e1′
1 = ±

√∣∣∣∣ f1

g1′

∣∣∣∣, e2′
2 = ±

√∣∣∣∣ f2

g2′

∣∣∣∣, e3′
3 = ±

√∣∣∣∣ f3

g3′

∣∣∣∣,

e4′
4 = ±

√∣∣∣∣ f4

h4′

∣∣∣∣, e5′
5 = ±

√∣∣∣∣ f5

h5′

∣∣∣∣, e6′
6 = ±1.

For any fixed values fi, fa and cwi,
c ni and given gi′ and ha′ , we can compute wi′ and ni′

as

w1′ = ±
√∣∣∣∣g1′f4

h4′f1

∣∣∣∣cw1, w2′ = ±
√∣∣∣∣g2′ f4

h4′f2

∣∣∣∣cw2, w3′ = ±
√∣∣∣∣g3′ f4

h4′f3

∣∣∣∣cw3,

n1′ = ±
√∣∣∣∣g1′f5

h5′f1

∣∣∣∣cn1, n2′ = ±
√∣∣∣∣g2′ f5

h5′f2

∣∣∣∣cn2, n3′ = ±
√∣∣∣∣g3′f5

h5′f3

∣∣∣∣cn3,

which defines solutions for (19).
So, any black ring metric and various types of (non) holonomic deformations can be

expressed as a Sasaki type metric for a 3-d (pseudo) Finsler spacetime.16 If the coefficients
of the nonholonomically deformed metric of type (10), or (14), are constrained to satisfy the

15Of course, we can work with arbitrary generating functions F(xi , ya) but this will result in off-diagonal
(pseudo) Finsler metrics in N-adapted bases, which would request a more cumbersome matrix calculus.
16In order to generate a homogeneous model on a total tangent bundle, we have to use another types of lifts of
metrics from a base, see [31]. For simplicity, in this work, we consider gravitational models with Sasaki type
lifts when the homogeneity is considered as a property only for the generating function but not obligatory for
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conditions (11), we model stationary Finsler–Einstein spacetimes enabled with canonical d-
connection structure. As a matter of principle, we can introduce Finsler like variables on any
(pseudo) Riemannian spacetime, see details in [12–14]. In this case, we generate Einstein
spacetimes with generic off-diagonal metrics, equivalently described in terms both of the
Levi–Civita connection and the canonical d-connection with respect to the corresponding
N-adapted frames, if the coefficients of such exact solutions are of type (17).

4 Vacuum (Pseudo) Finsler Ring Metrics

In this section, we construct exact solutions of (6), or (7), with λ = 0, defining vacuum
(pseudo) Finsler models of ring solutions.

4.1 Stationary Vacuum Ansatz

4.1.1 Canonical d-Connection Vacuum Configurations

In general, because of generic nonholonomic and nonlinear character of Finsler type config-
urations, such metrics can not be obtained in a limit λ → 0 for coefficients (11). It is neces-
sary to apply the anholonomic deformation method of generating exact solutions from the
very beginning to the vacuum Einstein equations for the canonical d-connection, R̂αβ = 0,
for an ansatz of type g (10). The nontrivial coefficients of such an exact solution must satisfy
the conditions

ε2ϕ
••(xk̂) + ε3ϕ

′′(xk̂) = 0;

h4 = ±e−20ϕ (h∗
5)

2

h5
for a given h5(x

i, y4), ϕ = 0ϕ = const;

wi = wi(x
k, y4), for any such functions if λ = 0;

ni =
{

1ni(x
k) + 2ni(x

k)
∫
(h∗

5)
2|h5|−5/2dy4, if n∗

i �= 0;
1ni(x

k), if n∗
i = 0.

(20)

Metrics of this class define vacuum nonholonomic deformations of black rings if the coef-
ficients of the primary ring metric ǧ are included into a target vacuum metric as gi = ηi ǧi ,

h4 = η4ȟ4 and h5 = η5ȟ5 and 1ni(x
k) = CŘ

1+y(x3)

F (x3)
.

It is not clear, in general, what physical importance may have solutions with data (20).
In a similar manner as in the previous section, it is possible to extract nonholonomically
polarized vacuum black ring solutions using decompositions on a small parameter ε like
we have considered for the coefficients of ansatz (14). Such vacuum black rings can be also
nonholonomically imbedded into solitonic backgrounds of type (16) and redefined in Finsler
variables following transforms of type (18) and (19). On tangent bundles, such solutions are
for the (pseudo) Finsler gravity with the canonical d-connection. This class of black rings
contain some nonholonomic configurations which are topologically nontrivial and with bro-
ken local Lorentz symmetry. They can be also constructed in higher dimension extensions
of (pseudo) Riemannian spaces but in those cases the anisotropic coordinates will not be of
“velocity” type.

other geometric objects. It is possible to construct Finsler models when all fundamental geometric objects are
rigorously subjected to the condition of homogeneity but they are very “nonlinear” in nature and subjected to
more sophisticate conditions of nonholonomic constraints.
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4.1.2 Levi–Civita Vacuum Configurations

It is necessary to impose additional constraints on the integral varieties in order to generate
exact solutions of the Einstein equations for the Levi–Civita connection, i.e of �Rαβ = 0.

Such additional constraints can be of type

h4 = ±4
[(√|h5|

)∗]2
, h∗

5 �= 0;

w2w3

(
ln

∣∣∣∣w2

w3

∣∣∣∣
)∗

= w•
3 − w′

2, w∗
i �= 0;

w•
3 − w′

2 = 0, if w∗
i = 0 and w1 = 0;

1n′
2(x

k) − 1n•
3(x

k) = 0, if n1 = 0,

(21)

for e−20ϕ = 1.

Decompositions on a small parameter ε result in ansatz of type (14) with the coefficients
subjected additionally to the conditions (21). The rest of nontrivial coefficients can be cho-
sen to be just those for a conformally transformed black ring metric (8) on a 6-d (pseudo)
Riemannian space.

4.2 Physical Parameters for Nonholonomic Black Rings

A nonholonomic black ring configuration for a small ε, both for any zero and/or nonzero
cosmological constant λ, can be characterized by physical parameters similar to those for
holonomic black ring configurations given by formulas (2.6)–(2.10) in [25]. In the case
of elliptic polarizations, we have to change Ř → ř (15) and compute the physical para-
meters for the metric (14) considering that a corresponding observer is in a point in the
v-part of spacetime and see a conformally transformed and locally anisotropically polar-
ized black ring metric with deformed parameters on for direction x2 (such an observer is in
nonholonomic/“N-adapted” system of reference).

The corresponding effective locally anisotropic (ellipsoidal) mass, M(ε,x2), angular
momentum, J (ε, x2), temperature, T (ε, x2), angular velocity, �(ε,x2), and horizon area,
AH (ε, x2), are given by formulas

M = 3π

4C

λ̌

1 − ν
ř2(ε, x2), J = π

2C

√
λ̌(λ̌ − ν)(1 + λ̌)

(1 − ν)2
ř3(ε, x2),

T = 1 + ν

4π

√
1 − λ̌

νλ̌(1 + λ̌)
ř−1(ε, x2), � =

√
λ̌ − ν

λ̌(1 + λ̌)
ř−1(ε, x2), (22)

AH = 8π
ν3/2

√
λ̌(1 − λ̌2)

(1 − ν)2(1 + ν)
ř3(ε, x2),

where ř(ε, x2) → Ř for ε → 0. Nevertheless, even in this limit such black ring config-
urations do not transform always into the well known homogeneous black ring solutions
because the metric (14) may preserve its nonholonomic character with certain nontrivial
N-connection coefficients (for instance, determined by certain nontrivial solitonic stationary
configurations).
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We can say that a nonholonomically polarized black ring with physical parameters (22)
mimics a generic “off-diagonal” metric gravitational stationary configuration when an usual
black ring is imbedded self-consistently into a (pseudo) Finsler/Riemannian background
with gravitational polarizations like in an effective continuous media. For simplicity, we
have chosen the simplest ellipsoidal polarization with small variable ř(ε, x2) but it is pos-
sible to construct more general classes of solutions when the constants ν and/ or λ̌ are also
polarized. Such nonholonomic configurations with ring topology can be also characterized
by locally anisotropic physical parameters (see some similar examples related to black torus
and torus-ellipsoid configurations in [7]).

5 Concluding Remarks

To summarize we have shown how black ring solutions can be constructed in (pseudo)
Finsler and nonholonomic (pseudo) Riemannian spacetimes. We used the anholonomic
deformation method of constructing exact solutions with generic off-diagonal metrics in
Einstein gravity and generalizations [6, 7, 12, 13]. The Finsler–Einstein spacetimes with
anisotropically polarized constants and/or nonholonomic imbedding into nontrivial back-
grounds are interesting configurations to study from both Finsler gravity and extra dimen-
sion gravity perspectives. Such objects can be described by asymptotically flat gravitational
configurations with a non spherical horizon topology generated by nonholonomic deforma-
tions of standard black ring metrics.

The first class of locally anisotropic stationary solutions was considered for the Einstein
equations with nontrivial constant in Finsler gravity and six dimensional extension of gen-
eral relativity. They were generated by nonholonomic deformations of the black ring metric
imbedded into corresponding (pseudo) Finsler/Riemannian manifolds. For the new classes
of Finsler–Einstein spacetimes, the dependence on the cosmological constant is generic non-
linear and non-integrable. It is not clear what type of physical interpretation such solutions
may have in general even it is obvious that they contain as a corresponding subclasses var-
ious types of black ring solutions in braneworld gravity, string gravity with nontrivial cos-
mological constant etc. Nevertheless, it is possible to extract physically important solutions
with nontrivial topology of horizon and gravitational polarizations of cosmological constants
using a procedure of extracting solutions depending on a small parameter, for instance, char-
acterizing small “ellipsoidal” deformations.

The second class of Finsler type solutions are for vacuum configurations defined by
generic off-diagonal metrics and corresponding nonlinear and linear connection structures.
They also consist examples of Finsler–Einstein spacetimes but, in general, they can not be
generated in the trivial limit of zero cosmological constant.

It might be possible to gain more insight on viability of gravity Finsler type and extra
dimension theories using properties of black hole/ring and nonlinear wave solutions in such
models and comparing them to similar ones in Einstein gravity and string/brane gravity. Pic-
turing such objects as nonholonomic deformations of already studied physical gravitational
systems but with additional polarizations of physical constants, deformed symmetries and
imbedding, for instance, into solitonic backgrounds, we provide realistic physical interpre-
tations for a very general class of generic off-diagonal metrics in general relativity and extra
dimension gravity.

The question of stability of the Finsler like black ring configurations can be solved explic-
itly for certain limits of small nonholonomic deformations by using the analysis performed
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for usual holonomic black rings [25] and black ellipsoid solutions [26]. For general non-
holonomic transforms of a stable black ring metric, the target solution may be both stable or
unstable with an undetermined physical status.

As we discussed in the Introduction, the results of this work bridges the gap between
rather different directions of research: new methods of constructing exact solutions in grav-
ity theories, Finsler gravity and extra dimension generalizations of general relativity. Our
approach allows to study solutions on tangent bundle and/or for nonholonomic manifold
spacetime models. The constructions on tangent bundles are related to theories with viola-
tion of local Lorentz symmetry and so-called “non-standard” models of gravity, see a con-
ventional classification in [13]. An approach to (pseudo) Finsler gravity and generalizations
being compatible with the modern paradigm of standard physics can be elaborated using
the geometric formalism of nonholonomic manifolds and associated nonlinear connection
structures.

It would be interesting to see whether the classes of solutions studied in this work, and
in the partner paper [14], can be generalized for noncommutative gravity [6] and Ricci flow
physical models [28]. Another very important extension of our results would be to encom-
pass gauge gravity and warped locally anisotropic geometries. Last, but not least, it would
be interesting to use the anholonomic deformation method to construct cosmological solu-
tions parametrized by generic off-diagonal metrics and possessing generalized symmetries
and anisotropic polarizations of fundamental physical constants.

Acknowledgements S.V. is grateful to R. Miron for very important discussions and kind support.
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